
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 281 (2005) 99–117
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
New improved series expansion for solving the moving
oscillator problem

B. Biondia, G. Muscolinob,�

aDipartimento di Ingegneria Civile e Ambientale, University of Catania, V.le A. Doria 6, I-95100, Catania, Italy
bDipartimento di Costruzioni e Tecnologie Avanzate, University of Messina, Salita Sperone 31, I-98166, Messina, Italy

Received 8 August 2003; accepted 8 January 2004

Available online 8 October 2004
Abstract

A new method able to evaluate the dynamic stress response of an elastic beam subject to moving
oscillators is presented. The proposed procedure improves the convergence and accuracy of the
conventional eigenfunction series expansion of beam response taking into account the gravitational,
inertial and damping effects due to the moving oscillators. The improvement of the conventional solution is
obtained by means of an extension to continuous systems of the dynamic correction method, originally
proposed for discretized structures. The proposed method is able to account for the truncated higher order
eigenfunctions by adding a pseudo-static term to the conventional series expansion. Numerical results are
presented to demonstrate the capability of the method to accurately determine the discontinuity and jump
in bending moment and shear force distributions, respectively.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The vibrations caused by loads travelling along a distributed parameter system have long been
an interesting topic in the field of civil engineering. In particular the dynamic response of beams
subjected to these loads is a problem commonly encountered in many important engineering
studies: as for example, in the design of railroads with high-speed trains and highway bridges with
see front matter r 2004 Elsevier Ltd. All rights reserved.
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moving vehicles, etc. A comprehensive review of the history and literature concerning this topic
can be found in Refs. [1,2].
As recently pointed out [2–6], three main types of problems have been studied in the literature:

the moving force problem (see e.g. Refs. [3,7,8]), the moving mass problem (see e.g. Refs. [7,9,10])
and the moving oscillator (or moving vehicle) problem (see e.g. Refs. [2,3,6]). In the first problem
the inertia of the moving system is neglected; and in the second one the inertia of the moving
system is taken into account but the stiffness of the system is assumed infinite; when the stiffness
of the moving system is considered finite the moving oscillator problem is obtained. The latter
problem leads to a more realistic description of the interaction effects between moving loads and
the beam. Moreover, once the solution of this problem is carried out, a very simple generalization
makes possible the evaluation of the interaction effects in the case of multi-degree-of-freedom
moving systems. To this aim, the coupled structural system is modelled in this paper as a
combination of distributed and lumped parameter substructures, the beam and the vehicle,
respectively and then, in the spirit of the component-mode synthesis method [11–14], the
equations governing the dynamic response of the coupled beam–vehicle system are deduced from
the equations of motion of the two substructures considered separately and appropriately
selecting the constraint conditions at the interface nodes. The formulation can be easily extended
to more realistic travelling vehicles.
The dynamic response of the moving oscillator problem is usually determined through the

modal analysis which consists of a series expansion of the solution in terms of the eigenfunctions
of the undamped and unloaded continuous system [1,2,7]. This conventional approach quickly
converges to the solution when the calculation of the lateral displacement of the continuum
structure is required. On the contrary, in the calculation of the bending moment and the shear
force along the continuous structure, since higher order derivatives of the series are required, the
expansion series converges poorly and cannot capture the jump in the shear force. To overcome
the limitation of the conventional method, Pesterev and Bergman [5] recently introduced the so-
called ‘‘improved series expansion’’ for the case of the moving load and oscillator problems. In
this approach the response of the continuous system is considered as the sum of two
contributions: the conventional modal expansion and the quasi-static solution of motion
equations, which takes into account the deflection of the system due to the gravitational
effects induced by moving oscillators. A further improvement has been recently proposed by
Pesterev et al. [6].
The previously described approaches, which can be successfully applied for both moving force

and oscillator systems, do not provide very accurate solutions when the vehicle possesses heavy
mass. This is due to the fact that the inertial effects due to the motion of the vehicle are not taken
into account in the quasi-static solution.
Recently, in the framework of the moving mass problem, the authors [15] proposed two

different methods able to capture, with different levels of accuracy, the beam discontinuities in the
bending moment and shear force laws, taking into account also the inertia effects. The first
method can be thought of as a generalization of the classical modal analysis in which the
eigensolutions of the undamped continuous system are evaluated by taking into account moving
masses, while in the second one the response is evaluated by considering the particular solution of
the differential equation governing the problem of moving masses. This method can be seen as an
extension of the dynamic correction method (DCM) to continuous systems, originally proposed
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for discretized structural systems [16]. According to this method the improvement in the response
is obtained by adding to the conventional series expansion(CSE) a correction term retaining
information on the truncated higher order series terms.
In this paper the last method is reformulated for the more general case of a coupled continuous

and discretized moving system. It is also shown that in such a way, contrary to the Pesterev and
Bergman improved series expansion [5], it is possible to capture the discontinuities in the bending
moment and shear force along the continuous system due to gravitational, inertial and damping
effects of the moving oscillator.
In the numerical applications the best accuracy of the proposed approach with respect to the

others presented in the literature is shown.
2. Motion equations of the coupled beam-oscillator system

Consider a spatially one-dimensional elastic beam of length l crossed by N moving oscillators
with constant velocity v (Fig. 1). Assuming a linear-elastic behaviour of the beam and oscillators,
and by neglecting the effect of the rotational inertia and shear strain on the flexural motion of the
beam, the dynamic behaviour of the beam and oscillators, separately considered, are governed by
the following differential equations, respectively:

rA €wðx; tÞ þ b _wðx; tÞ þ EIwIV ðx; tÞ ¼
XN

i¼1

wiðtÞriðtÞd x � xiðtÞð Þ;

mi €uiðtÞ þ wiðtÞ €ub;iðtÞ
� �

þ ci _uiðtÞ þ kiuiðtÞ ¼ mig; i ¼ 1; . . . ;N; ð1a;bÞ

where the prime and dot over a variable denote space and time derivative, respectively.
In Eq. (1a) w(x,t) is the lateral displacement of the beam; r; b, and E denote the mass density,

the coefficient of viscous damping and the Young’s modulus of the material, respectively; A and I

are the cross-sectional area and the moment of inertia, respectively. For the sake of simplicity, all
the previous quantities are here supposed constant on the whole length of the beam. Further
d x � xiðtÞð Þ is the Dirac’s delta function; riðtÞ represents the interaction force, located at the
instantaneous position xiðtÞ on the beam of the ith moving oscillator, transmitted to the beam by
the oscillator, given by the following relationship:

riðtÞ ¼ ci _uiðtÞ þ kiuiðtÞð Þ ¼ mi g � €uiðtÞ þ wiðtÞ €ub;iðtÞ
� �� �

: ð2Þ
( )i tξ

, , ,E I Aρ

l

x 

vim

ikic

id

1m

1c 1k

Fig. 1. Structural system: beam crossed by N moving oscillators.
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The instantaneous position on the beam xiðtÞ of the ith moving oscillator, in the considered case
of uniform motion, is given by the following relationship:

xiðtÞ ¼ vt � di; ð3Þ

where v is the constant velocity of the moving oscillators and di is the distance between the ith and
the first oscillator, being obviously d1 ¼ 0 (see Fig. 1). Moreover, in Eq. (1a) wiðtÞ is the window
function of the ith oscillator, defined as follows:

wiðtÞ ¼
1 for 0pxiðtÞpl;

0 for xiðtÞo0 or xiðtÞ4l:

�
ð4Þ

In Eq. (1b) uiðtÞ is the relative displacement of the ith moving oscillator with respect to the
beam, diminished of the static displacement us;iðtÞ ¼ k�1

i mig; ub;iðtÞ is the displacement of the ith
interface node, located at the instantaneous position xiðtÞ; where the beam and the ith oscillator
are connected (see Fig. 1). Moreover mi; ci and ki are the mass, coefficient of viscous damping and
stiffness of the ith oscillator, respectively, and g is the acceleration of gravity.
It has to be noted that the differential equations (1) govern the evolution of the structural

response of the so-called moving oscillators problem. Furthermore, by analysing Eqs. (1) and (2),
it is easy to show that both the moving forces and moving masses problems can be obtained from
the moving oscillators problem, by neglecting the inertial effects and assuming the stiffness of the
oscillators equal to infinite, respectively. Indeed, in the first case riðtÞ ¼ mig and in the second one
uiðtÞ ¼ 0:
In what follows it is assumed that the beam is simply supported at two ends. Furthermore, zero

initial conditions are assumed, implying that the beam is at rest at the time t ¼ 0 when the first
oscillator enters into the left end of the structure. Notice that this assumption merely simplifies the
notation and does not affect the generality of the proposed procedure.
According to the conventional modal analysis of continuous structures [1,7], the function

w(x,t), representing the lateral displacement of the beam, can be expressed in an approximate way
through a series expansion in terms of the first n eigenfunctions fjðxÞ of the beam as follows:

wCSEðx; tÞ ¼
Xn

j¼1

fjðxÞyjðtÞ ¼ /ðxÞTyðtÞ; ð5Þ

where the apex T means transpose, while the subscript CSE denotes that the lateral displacement
wCSEðx; tÞ is evaluated by means of the CSE. Moreover, in Eq. (5) yðtÞ is a vector of order n listing
the generalized displacements yjðtÞ and /ðxÞ is a vector function collecting the first n
eigenfunctions fjðxÞ of the unloaded and undamped beam, evaluated as the solution of the
following eigenproblem:

EI/IV
ðxÞ � o2rA/ðxÞ ¼ 0: ð6Þ

The eigenfunctions fjðxÞ satisfy the boundary conditions and the following orthogonality
conditions:

rA

Z l

0

/ðxÞ/ðxÞTdx ¼ In; EI

Z l

0

/ðxÞ/IV
ðxÞTdx ¼ X2; ð7a;bÞ
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where In is the identity matrix of order n and X is the n � n diagonal matrix collecting the first
frequencies oj of the beam.
By substituting the modal expansion (5) into Eq. (1a), pre-multiplying both sides by /ðxÞ and

integrating over the length l of the beam, the motion equations of the beam in terms of the
generalized displacements yðtÞ are obtained in the following form:

€yðtÞ þ N_yðtÞ þ X2yðtÞ ¼ UðxðtÞÞXðtÞrðtÞ: ð8Þ

In Eq. (8) N is the modal damping matrix of the beam, defined as follows:

N ¼ b

Z l

0

/ðxÞ/ðxÞTdx ¼
b

rA
In: ð9Þ

r(t) is a vector collecting the N interaction forces riðtÞ transmitted to the beam by the moving
oscillators; X(t) is the N � N diagonal matrix listing the window functions wiðtÞ; finally U xðtÞð Þ is
the following n � N matrix:

U xðtÞð Þ ¼ / x1ðtÞð Þ / x2ðtÞð Þ � � � / xNðtÞð Þ
� �

ð10Þ

with nðtÞ being the vector listing the instantaneous positions xiðtÞ of the N moving oscillators.
In the spirit of the component-mode synthesis method [11–14], the equations of motion of the

coupled beam–oscillators system are obtained starting from the equations of motion (8) and (1b)
by imposing the following condition at the interface nodes

ub;iðtÞ � wCSE xiðtÞ; tð Þ ¼ / xiðtÞð Þ
TyðtÞ; i ¼ 1; . . . ;N: ð11Þ

By differentiating Eq. (11) and taking into account that, for the case under study of uniform
motion of the oscillators, it results in

/ xiðtÞð Þ ¼ _xiðtÞ
d/ xiðtÞð Þ

dxi

¼ v/I xiðtÞð Þ;

€/ xiðtÞð Þ ¼ _xiðtÞ
d _/ xiðtÞð Þ

dxi

¼ v2/II xiðtÞð Þ; ð12a;bÞ

the acceleration €ub;iðtÞ of the ith interface node is obtained as follows

€ub;iðtÞ ¼ v2/II xiðtÞð Þ
TyðtÞ þ 2v/I xiðtÞð Þ

T _yðtÞ þ / xiðtÞð Þ
T €yðtÞ: ð13Þ

By substituting Eq. (2) and (13) into Eq. (1b) and (8), the equations of motion of the coupled
beam–oscillators system, after standard mathematical manipulations, are obtained in the
following compact form:

MðtÞ€uðtÞ þ CðtÞ_uðtÞ þ KðtÞuðtÞ ¼ sðtÞg: ð14Þ
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In Eq. (14) the matrices MðtÞ; CðtÞ and KðtÞ and the vectors uðtÞ and tðtÞ are defined as follows:

MðtÞ ¼
In þ DMbðtÞ MbðtÞ

T

MbðtÞ Mv

" #
; CðtÞ ¼

xþ DCbðtÞ 0

CbðtÞ Cv

" #
;

KðtÞ ¼
X2

þ DKbðtÞ 0

KbðtÞ Kv

" #
;

uðtÞ ¼
yðtÞ

uvðtÞ

( )
; tðtÞ ¼

UðxðtÞÞMvXðtÞg

Mvg

( )
: ð15a2eÞ

In the latter equations the following matrices have been defined:

DMbðtÞ ¼ UðnðtÞÞMvXðtÞU
TðnðtÞÞ; MbðtÞ ¼ MvXðtÞU

TðnðtÞÞ;

DCbðtÞ ¼ 2vUðnðtÞÞMvXðtÞU
T
1 ðnðtÞÞ; CbðtÞ ¼ 2vMvXðtÞU

T
1 ðnðtÞÞ;

DKbðtÞ ¼ v2UðnðtÞÞMvXðtÞU
T
2 ðnðtÞÞ; KbðtÞ ¼ v2MvXðtÞU

T
2 ðnðtÞÞ ð16a2fÞ

with Mv; Cv and Kv being the N � N diagonal matrices listing the masses mi; coefficients of
viscous damping ci and stiffness ki of the moving oscillators, respectively; uvðtÞ a vector listing the
N relative displacements uiðtÞ of the oscillators ; g a vector whose N components are all equal to 1;
U1 nðtÞð Þ and U2 nðtÞð Þ the following n � N matrices:

U1ðnðtÞÞ ¼ /I
ðx1ðtÞÞ /I

ðx2ðtÞÞ � � � /I
ðxNðtÞÞ

� �
;

U2ðnðtÞÞ ¼ /II
ðx1ðtÞÞ /II

ðx2ðtÞÞ � � � /II
ðxNðtÞÞ

� �
; ð17a;bÞ

where the apex on the vector function / xiðtÞð Þ denotes the partial derivative of /ðxÞ with respect to
x evaluated at x ¼ xiðtÞ:
It has to be noted that due to the time dependence of the instantaneous position xiðtÞ of the

interface nodes where the beam and oscillators are connected, in Eq. (14) CðtÞ and KðtÞ are time-
dependent not symmetric matrices. Notice that, by neglecting the time derivatives of the position
functions xiðtÞ; the differentiation of Eq. (11) leads to the following simplified form for the
accelerations of the interface nodes:

€ub;iðtÞ ¼ / xiðtÞð Þ
T €yðtÞ; i ¼ 1; . . . ;N: ð18Þ

By substituting Eq. (2) and (18) into Eq. (1b) and (8) the following simplified equations of
motion of the coupled beam–oscillators system are obtained:

MðtÞ€~uðtÞ þ ~C_~uðtÞ þ ~K~uðtÞ ¼ sðtÞg; ð19Þ

where ~C and ~K are symmetric and not time-dependent matrices, defined as follows:

~C ¼
N 0

0 Cv

� 

; ~K ¼

X2 0

0 Kv

" #
: ð20a;bÞ

The accuracy of the simplified solution ~uðtÞ with respect to the complete one uðtÞ will be
discussed in the numerical application section.
It has to be noted that due to the time dependence of the coefficient matrices of differential

equations (14) and (19), the equations of motion of the coupled beam–oscillators system can be
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solved by means of the well-known step-by-step integration procedures [17,18], by assuming the
coefficient matrices constant in each time step.
3. Methods for the evaluation of bending moment and shear force

3.1. Conventional series expansion

Once the set of ordinary differential equations (14) is solved, the bending moment and shear
force laws along the beam can be obtained by differentiating the series expansion (5) with respect
to the spatial coordinate x. Specifically, for an uniform beam the bending moment and shear force
laws are given, respectively, by

MCSEðx; tÞ ¼ �EIwII
CSEðx; tÞ ¼ �EI/II

ðxÞTyðtÞ;

VCSEðx; tÞ ¼ �EIwIII
CSEðx; tÞ ¼ �EI/III

ðxÞTyðtÞ;
ð21a;bÞ

where the subscript CSE denotes that these functions are evaluated by means of the CSE (5). Since
the eigenfunctions of the beam are smooth functions, Eq. (21) are not able to capture the
discontinuity in the bending moment and shear force laws due to the interaction forces riðtÞ

transmitted to the beam by the moving oscillators at the interface node. Then Eq. (21) converge
very poorly and the Gibbs phenomenon [19] has been evidenced when the shear force is
approximate by means of a large number of terms in the series expansion (5).
3.2. Improved series expansion

To overcome the bad convergence of the CSE (5) in the evaluation of bending moment and
shear force, Pesterev and Bergman [5] proposed, for both cases of moving forces and oscillators,
the so-called improved series expansion. This approach can be seen as the extension to continuous
systems of the well-known mode-acceleration method (MAM) proposed in the literature [20,21]
for discretized structural systems.
According to this method, the response of the beam is evaluated as the sum of the CSE (5) and a

quasi-static response, which takes into account the quasi-static displacements of the beam under
the quasi-static interaction forces rs;i transmitted by the moving oscillators associated with the
truncated higher order eigenfunctions. The quasi-static response is evaluated as the difference of
the quasi-static displacement function wsðx; tÞ of the beam under the interaction forces rs;i;
obtained as the solution of Eq. (1a) by neglecting the damping and inertial effects, and the quasi-
static modal solution ysðtÞ rewritten in the nodal space. Hence the improved solution can be
written as follows:

wMAMðx; tÞ ¼ wCSEðx; tÞ þ wsðx; tÞ � /T
ðxÞysðtÞ; ð22Þ

where the subscript MAM denotes that the lateral displacement of the beam is evaluated,
according to the improved series expansion, by the extension to continuous systems of the MAM.
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In the latter equation the quasi-static solutions wsðx; tÞ and ysðtÞ are given respectively as

wsðx; tÞ ¼
XN

i¼1

wiðtÞrs;iðtÞGðx; xiðtÞÞ ¼ GT
ðx; nðtÞÞXðtÞrs;

ysðtÞ ¼ X�2UðnðtÞÞXðtÞrs ð23a;bÞ

with rs and G x; nðtÞð Þ being the vectors of order N listing the quasi-static interaction forces rs;i and
the Green’s function G x; xiðtÞð Þ; evaluated at the locations xiðtÞ of the moving oscillators,
respectively. The Green’s function, also known in the literature as influence function, describes the
deflection of the beam at the point x under an unit static force applied to the point xiðtÞ [5].
Analytical closed-form expressions of this function can be easily deduced for the beam governed
by Eq. (1a). Notice that the quasi-static interaction forces rs;i transmitted to the beam by the
oscillators can be obtained from Eq. (1b) by neglecting the inertial and damping effects as follows

rs;i ¼ kius;i ¼ mig ð24Þ

with us;i ¼ k�1
i mig being the quasi-static response of the oscillators, and then the forces rs;i are

coincident with the weight of the oscillators. It follows that the quasi-static displacement functions
wsðx; tÞ and ysðtÞ take into account only the gravitational effects due to the moving oscillators,
while the damping and inertial effects induced by the motion of the oscillators are neglected.
By differentiating Eq. (22) with respect to the spatial coordinate x and taking into account

Eqs. (23) and (24), the improved bending moment and shear force laws obtained along the
beam are

MMAMðx; tÞ ¼ MCSEðx; tÞ � EI GII
ðx; nðtÞÞT � /II

ðxÞTX�2UðnðtÞÞ
� �

MvXðtÞcg;

VMAMðx; tÞ ¼ VCSEðx; tÞ � EI GIII
ðx; nðtÞÞT � /III

ðxÞTX�2UðnðtÞÞ
� �

MvXðtÞcg: ð25a;bÞ

It has to be noted that because the quasi-static displacement functions ysðtÞ and wsðx; tÞ; defined
in Eq. (23), are not able to take into account the damping and inertial effects due to the motion of
the oscillators, in the improved solution given by Eq. (25) these effects are neglected. This
limitation of the improved solution can be evidenced by evaluating the jump DVMAM xiðtÞ; tð Þ in
the shear force at the abscissa x ¼ xiðtÞ defining the instantaneous position of the ith interface
node. For the simply supported beam the Green’s function can be written in the following
form [5]:

G x; xiðtÞð Þ ¼
1

6EI

xiðtÞ � l

l
x2 � 2lxiðtÞ þ x2i ðtÞ
� �

x þ x � xiðtÞð Þ
3U x � xiðtÞð Þ

� 

; ð26Þ

where U x � xiðtÞð Þ is the unit step function. In view of the continuity of the functions fjðxÞ and
VCSEðx; tÞ; the following expression of the jump DVMAM xiðtÞ; tð Þ is obtained:

DVMAM xiðtÞ; tð Þ ¼ VMAM xþi ðtÞ; t
� �

� VMAM x�i ðtÞ; t
� �

¼ �wiðtÞmig ¼ �wiðtÞrs;iðtÞ ð27Þ

with xþi ðtÞ and x�i ðtÞ being the abscissas at the right- and left-hand side of the instantaneous
position xiðtÞ of the ith moving oscillator, respectively. Eq. (27) shows that by applying the
improved series expansion, the jump in the shear force takes into account only the gravitational
effects of the ith moving oscillator.
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3.3. Proposed improved series expansion

As shown, the above described improved series expansion takes into account only
the gravitational effects associated with moving oscillators. By operating in this
manner, the discontinuities in the shear force law are equal to the scalar value of oscillators
weight.
In this section, with the aim of accounting for the gravitational, damping and inertial effects

due to the moving oscillators, although in approximate form, a new method is proposed. The
main idea of the proposed method stems from the DCM, originally proposed by Borino and
Muscolino [16] for discrete structural systems. According to the DCM, the dynamic response of
the beam can be improved by superimposing on the CSE a term associated with the particular
solution of Equation (1a), bearing information on the truncated higher order eigenfunctions. This
term is evaluated as the difference of the particular solution wpðx; tÞ of Eq. (1a) and the modal
particular solution ypðtÞ rewritten in the nodal space. Hence the proposed improved solution of
the beam can be written as follows:

wDCMðx; tÞ ¼ wCSEðx; tÞ þ wpðx; tÞ � /T
ðxÞypðtÞ; ð28Þ

where the subscript DCM denotes that the lateral displacement of the beam is improved by
applying an extension of the DCM.
The particular solutions wpðx; tÞ and ypðtÞ can be evaluated in approximate form by using a step-

by-step integration procedure under the hypothesis that the interaction forces riðtÞ transmitted to
the beam by the N moving oscillators are constant within each time step. For instance, let the time
interval be subdivided into small steps of equal length Dt so that tk ¼ kDt is the kth sampling time
instant. Moreover, since the beams are usually lightly damped, it is possible to evaluate the
particular solution of the motion equation of the beam neglecting the damping term. This greatly
simplifies the evaluation of wpðx; tÞ; and ypðtÞ; the damping coefficient b, of the beam is assumed to
be equal to zero.
Under the latter hypotheses wpðx; tÞ; in the kth time step, is obtained as the particular solution

of the following differential equations:

rA €wðx; tÞ þ EIwIV ðx; tÞ ¼
XN

i¼1

wiðtÞriðtkÞd x � xiðtÞð Þ; tk�1ptptk; ð29Þ

where riðtkÞ is the assumed constant value of the ith interaction force within the kth time step
given as

riðtkÞ ¼ ci _uiðtkÞ þ kiuiðtkÞ: ð30Þ

This particular solution wpðx; tÞ is related to the particular solution Mpðx; tÞ written in terms of
bending moment by means of the following relationship:

wpðx; tÞ ¼ �

Z l

0

GII ðx; zÞMpðz; tÞdz: ð31Þ
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The solution Mpðx; tÞ can be evaluated, according to the unconditionally convergent procedure
described in Ref. [7], by using the following iterative relationship:

M ðrÞ
p ðx; tÞ ¼ Msðx; tÞ þ rAEI

Z l

0

GII ðx; zÞ €wðr�1Þ
p ðz; tÞdz; tk�1ptptk; ð32Þ

where the apex (r) denotes the particular solution M ðrÞ
p ðx; tÞ at the ith iteration. In Eq. (32) Gðx; zÞ

is the Green’s function and Msðx; tÞ is the quasi-static bending moment of the beam given as

Msðx; tÞ ¼ �EI
XN

i¼1

wiðtÞG
II x; xiðtÞð ÞriðtkÞ: ð33Þ

By introducing the following functions:

H
ðrÞ
M x; xiðtÞð Þ ¼

R l

0

R l

0 GII ðx; zÞGII ðz; zÞ
@2H ðr�1Þ

M z; xiðtÞð Þ

@x2i
dz dz;

H
ð0Þ
M x; xiðtÞð Þ ¼ GII x; xiðtÞð Þ

ð34a;bÞ

the particular solution Mpðx; tÞ in terms of bending moment can be written as follows

Mpðx; tÞ ¼ �EI
XN

i¼1

wiðtÞriðtkÞ
X1
r¼0

�rAEIv2
� �r

H
ðrÞ
M x; xiðtÞð Þ; tk�1ptptk: ð35Þ

In the evaluation of this solution it has been taken into account that for the selected boundary
conditions of the beam it results

_wiðtÞG
II x; xiðtÞð Þ ¼ 0: ð36Þ

Starting from Eq. (35), the particular solution wpðx; tÞ can be obtained by means of Eq. (31) as
follows:

wpðx; tÞ ¼
XN

i¼1

wiðtÞriðtkÞ
X1
r¼0

�rAv2
� �r

HðrÞ
w x; xiðtÞð Þ; tk�1ptptk; ð37Þ

where the following functions have been defined:

H ðrÞ
w x; xiðtÞð Þ ¼ EI

Z l

0

GII ðx; zÞHðrÞ
M z; xiðtÞð Þdz ¼

Z l

0

Gðx; zÞ
@2H ðr�1Þ

w z; xiðtÞð Þ

@x2i
dz;

H ð0Þ
w x; xiðtÞð Þ � G x; xiðtÞð Þ: ð38a;bÞ

Contrary to wpðx; tÞ; the modal particular solution ypðtÞ can be evaluated in closed form by
solving the following differential equation:

€yðtÞ ¼ X2yðtÞ ¼ UðnðtÞÞXðtÞrðtkÞ; tk�1ptptk; ð39Þ
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where rðtkÞ is the vector collecting the N interaction forces riðtkÞ evaluated within the kth time step.
It results in

ypðtÞ ¼ W�1UðnðtÞÞXðtÞrðtkÞ; tk�1ptptk; ð40Þ

with W being the n � n diagonal matrix defined as follows:

W ¼ X2
� v2

ffiffiffiffiffiffiffi
rA

EI

r
X: ð41Þ

Once the particular solutions wpðx; tÞ and ypðtÞ are evaluated, the bending moment and shear
force laws within the kth time step, can be obtained by differentiating Eq. (28) as follows:

MDCMðx; tÞ ¼ MCSEðx; tÞ � EI hII ðx; nðtÞÞT � /II
ðxÞTW�1UðnðtÞÞ

� �
XðtÞrðtkÞ;

VDCMðx; tÞ ¼ VCSEðx; tÞ � EI hIII ðx; nðtÞÞT � /III
ðxÞTW�1UðnðtÞÞ

� �
XðtÞrðtkÞ ð42a;bÞ

with h x; nðtÞð Þ being the vector defined as

hðx; nðtÞÞ ¼

hðx; x1ðtÞÞ

hðx; x2ðtÞÞ

..

.

hðx; xNðtÞÞ

8>>>><
>>>>:

9>>>>=
>>>>;
; hðx; xiðtÞÞ ¼

X1
r¼0

ð�rAv2ÞrH ðrÞ
w ðx; xiðtÞÞ: ð43a;bÞ

The proposed improved solution is able to take into account gravitational, damping and
inertial effects due to the moving oscillators. In fact, in view of the continuity of the functions
fjðxÞ and VCSEðx; tÞ; the jump in the shear force at the abscissa x ¼ xiðtkÞ defining the
instantaneous position of the ith moving oscillator at the instant t ¼ tk; is given by

DVDCM xiðtkÞ; tkð Þ ¼ VDCM xþi ðtkÞ; tk

� �
� VDCM xþi ðtkÞ; tk

� �
¼ �wiðtkÞ ci _uiðtkÞ þ kiuiðtkÞð Þ

¼ �wiðtkÞmi g � €uiðtkÞ � €ub;iðtkÞ
� �

¼ �wiðtkÞriðtkÞ: ð44Þ

Eq. (44) shows that, contrary to Eq. (27), by applying the proposed procedure the inertial,
damping and gravitational effects due to the moving oscillators are included.
4. Numerical applications

The aim of numerical applications is to demonstrate the better accuracy of the proposed
approach with respect to the CSE and the improved series expansion (MAM) in the evaluation of
the bending moment and shear force distributions along the beam. The results obtained by using
the proposed approach are denoted here by the subscript DCM since this method improves the
CSE by means of an extension to the continuous systems of the DCM, originally proposed for
discretized structures. This method, contrary to the CSE and the improved series expansion
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(MAM), is able to take into account gravitational, inertial and damping effects induced on the
beam by the moving oscillator. Moreover, the case of a fixed oscillator is first presented with the
aim of providing comparisons between the solution evaluated by means of a finite element
discretization (FE) of the coupled beam–oscillators system and CSE, MAM and DCM
approaches. This comparison is not performed in the case of a moving oscillator in view of the
poor accuracy in the solution of this problem provided by using the common finite element
standard codes.

4.1. Simply supported beam with fixed oscillator

In this first example the simply supported beam connected to a single fixed oscillator subjected
to a force f ðtÞ; depicted in Fig. 2, is considered. The aim of this application is to compare the
accuracy of the conventional and the two improved series expansion, described in the previous
sections, with respect to the solution obtained by means of a FE discretization of the coupled
beam–oscillators system, here considered as the referred solution.
In particular the following data have been assumed for the beam:

l ¼ 10 m; r ¼ 2:5t; E ¼ 3:0� 107 kN
�
m2; I ¼ 3:12� 10�3 m4; A ¼ 0:15 m2;

while the oscillator, connected to the beam at the abscissa x0 ¼ 5 m; is characterized by the
natural frequency o and the adimensional mass parameter m defined as follows:

m ¼
m

rAl
: ð45Þ

For sake of simplicity, and without losing generality, both beam and oscillator are supposed as
not damped.
The example under study can be seen as a particularization of the problem of a beam subjected

to a single moving oscillator with velocity v equal to zero, and then the equations of motion of the
coupled beam–oscillators system can be written in the following form:

M0 €q0ðtÞ þ K0q0ðtÞ ¼ s0f ðtÞ; ð46Þ

where the following matrices have been defined:

M0 ¼
In þ m/ðx0Þ/

T
ðx0Þ m/ðx0Þ

m/T
ðx0Þ m

" #
; K0 ¼

X2 0

0 k

" #
; t0 ¼

/ðx0Þ

1

� �
: ð47a2cÞ
0ξ

, , ,E I Aρ

l

m

( )f t

k

Fig. 2. Beam connected to a single fixed undamped oscillator.



ARTICLE IN PRESS

B. Biondi, G. Muscolino / Journal of Sound and Vibration 281 (2005) 99–117 111
Once the equations of motion (46) have been solved, by applying the MAM improved series
expansion the following expression for lateral displacement, bending moment and shear force of
the beam are obtained:

wMAMðx; tÞ ¼ wCSEðx; tÞ þ Gðx; x0Þ � /ðxÞTX�2/ðx0Þ
� �

f ðtÞ;

MMAMðx; tÞ ¼ MCSEðx; tÞ � EI GII ðx; x0Þ � /II
ðxÞTX�2/ðx0Þ

� �
f ðtÞ;

VMAMðx; tÞ ¼ VCSEðx; tÞ � EI GIII ðx; x0Þ � /III
ðxÞTX�2/ðx0Þ

� �
f ðtÞ: ð48a2cÞ

Instead, a generalization in the case of velocity v of the oscillator equal to zero of the proposed
improved series expansion (DCM) leads to the following equations:

wDCMðx; tÞ ¼ wCSEðx; tÞ þ Gðx; x0Þ � /ðxÞTX�2/ðx0Þ
� �

kuðtkÞ;

MDCMðx; tÞ ¼ MCSEðx; tÞ � EI GII ðx; x0Þ � /II
ðxÞTX�2/ðx0Þ

� �
kuðtkÞ;

VDCMðx; tÞ ¼ VCSEðx; tÞ � EI GIII ðx; x0Þ � /III
ðxÞTX�2/ðx0Þ

� �
kuðtkÞ; ð49a2cÞ

The numerical results are here evaluated in the case of an oscillator characterized by an
adimensional mass parameter m ¼ 0:2 and natural frequency o ¼ 30 rad=s and subject to the
harmonic force f ðtÞ ¼ f 0 sinðof tÞ with f 0 ¼ 10 kN and of ¼ 15 rad=s: In Figs. 3 and 4 the
dynamic response of the beam, in terms of bending moment Mðx; tÞ and shear force V ðx; tÞ
distributions, respectively, evaluated by applying the CSE and the two improved ones, are
reported in comparison with the response obtained by means of the FE discretization. The
bending moment and shear force distributions depicted in Figs. 3 and 4 are evaluated at the time
t ¼ 0:6 s by using 2 and 5 eigenfunctions of the beam. These figures evidence that the
conventional series expansion, termed in figure as CSE, is not able to capture the discontinuities in
the bending moment and shear force laws. These discontinuities are partially captured by the
MAM approach, which considers only the effects due to the force f ðtÞ acting on the oscillator.
Instead, both f ðtÞ and inertial effects, due to the motion of the oscillator, are taken into account
by using the DCM approach, and the obtained bending moment and shear force laws almost
coincide with the ones evaluated by using the FE discretization.
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Fig. 3. Bending moment distributions for the case of fixed oscillator at the instant t ¼ 0:6 s by considering n

eigenfunctions. ——, FE; - - - - -, CSE; – –, MAM; – - –, DCM.
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Fig. 4. Shear force distributions for the case of fixed oscillator at the instant t ¼ 0:6 s by considering n eigenfunctions.
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The main accuracy of the DCM approach with respect to the MAM is evidenced in Fig. 5 where
the percentage errors �DV of the jump in the shear force versus the adimensional mass parameter m
and versus the frequency of of the applied force f ðtÞ; respectively, are reported. In these figures
�DV is the percentage error of the jump in the shear force evaluated by using the following
relationship:

�y ¼
yR � yAj j

yRj j
� 100 ð50Þ

yR and yA being the referred and approximate values of y; respectively. In particular, in Fig. 5 it
has been assumed that yR ¼ DVFE x0; t1ð Þ and yA ¼ DVMAM x0; t1ð Þ for the solid line and yA ¼

DVDCM x0; t1ð Þ for the dashed line. The jump in the shear force DVMAM x0; t1ð Þ; DVDCM x0; t1ð Þ and
DVFE x0; t1ð Þ are evaluated by using 5 eigenfunctions of the beam at the time t1 in which the
applied force f ðtÞ engages its maximum value f 0 for the first time. Fig. 5 shows that the percentage
errors �DV of the jump in the shear force evaluated by using the MAM approach increase by
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increasing the mass of the oscillator and the frequency of of the applied force. On the contrary,
the errors �DV evaluated by using the DCM approach are almost independent from the mass of the
oscillator and the frequency of the applied force, being very small in all the examined cases.
4.2. Simply supported beam subjected to moving oscillators

As a second numerical application the same beam studied in the previous section, but subjected
to an undamped moving oscillator with constant velocity v, is considered.
The aim of this further numerical investigation is first to assess the accuracy of the solution ~uðtÞ

of the simplified equations of motion of the coupled beam–oscillators system, given by Eq. (19),
obtained by neglecting the time derivatives of the position xðtÞ of the oscillator and having
symmetric not time-dependent matrix ~K; with respect to the solution uðtÞ of the complete
equations of motion, given by Eq. (14). To this aim in Fig. 6, the percentage errors �w of the
maximum displacement wMAX of the beam, evaluated by using 5 eigenfunctions, versus the
velocity v of the moving oscillator are reported. The percentage error �w is evaluated by means of
Eq. (50) with yR ¼ wMAX and yA ¼ ~wMAX; ~wMAX being the maximum value of displacement ~wðx; tÞ
evaluated by solving the simplified equation of motion given by Eq. (19). Fig. 6 shows that, as
expected, the percentage errors �w increase by increasing velocity v of the moving oscillator. In fact
Eq. (19) is obtained by neglecting in Eq. (13) the terms 2v/I xiðtÞð Þ

T _yðtÞ and v2/II xiðtÞð Þ
TyðtÞ; that

are negligible only for low values of the velocity v of the moving oscillator. In particular, for the
beam under study, the simplified equations of motion may give no accurate solution, with a
maximum error of about 45%. It follows that all terms in the equations of motion are considered
in these numerical applications.
In Figs. 7 and 8 the dynamic response of the beam, in terms of bending moment Mðx; tÞ and

shear force Vðx; tÞ distributions evaluated by using the CSE and the two improved ones for
m ¼ 0:2 and v ¼ 10 m=s; are shown. The bending moment and shear force distributions depicted
in Figs. 7 and 8 are evaluated at the time t ¼ 0:5 s; at which the oscillator is at the mid-span of the
beam, by using 2 and 5 eigenfunctions of the beam. Like the case of a fixed oscillator, Figs. 7 and 8
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Fig. 6. Percentage errors of the maximum displacement of the beam versus the velocity v of the moving oscillator.
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Fig. 8. Shear force distributions for the case of moving oscillator at the instant t ¼ 0:5 s by considering n
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show that the CSE is not able to capture the discontinuities in the bending moment and shear
force laws, while these discontinuities are captured, with different levels of accuracy, by the MAM
and DCM approaches. In particular in the MAM approach the discontinuities in the bending
moment and shear force laws are due to the gravitational effects of the oscillator only, while the
DCM approach considers both the gravitational and inertial effects.
To evidence the differences of the two improved series expansion, in Fig. 9 the values of jump in

the shear force evaluated by applying the MAM and DCM series expansion versus the
adimensional mass parameter m; for different values of the velocity v of the oscillator, are
depicted. The jump in the shear force is evaluated at the time t ¼ 0:5 s; at which the oscillator is at
the mid-span of the beam, by using 5 eigenfunctions. Fig. 9 shows that by applying the MAM
approach, the jump in the shear force, being coincident with the oscillator’s weight,
increases linearly with the mass of the oscillator and is independent of the velocity v. On the
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contrary, by using the DCM approach, the jump in the shear force is strongly influenced by the
velocity v of the moving oscillator, and its biggest value is not necessarily obtained for the heaviest
oscillator.
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Finally, as a third example the same beam previously studied and subjected to a set of N ¼ 3
undamped moving oscillators with constant velocity v ¼ 10 m=s is considered. All the oscillators
are characterized by the values m ¼ 0:2 and o ¼ 30 rad=s and the adopted distance between two
consecutive oscillators is d ¼ 1:5 m: In Fig. 10 the dynamic response of the beam, in terms of
bending moment Mðx; tÞ and shear force V ðx; tÞ distributions evaluated by using the CSE and the
two improved ones is reported. The bending moment and shear force distributions are
evaluated at the time t ¼ 0:65 s; at which the second oscillator is at the mid-span of the beam,
by using 5 eigenfunctions. Like the previously considered cases, Fig. 10 shows that the CSE is not
able to capture the discontinuities in the bending moment and shear force laws, while these
discontinuities are captured, with different levels of accuracy, by the MAM and DCM series
expansions.
5. Conclusions

A new method able to calculate with considerable accuracy the bending moment and shear
force distributions of an elastic beam carrying moving oscillators is presented. The proposed
procedure improves the convergence and accuracy of the conventional eigenfunction series
expansion of beam response by considering the particular solution of the differential equation,
governing the problem, associated with the truncated terms of the eigenfunction expansion. The
proposed method can be seen as an extension of the DCM, originally proposed for discretized
structural systems.
It is also shown that the method is able to take into account gravitational, inertial and damping

effects of the moving oscillators, contrary to a recently proposed improved series expansion where
the correction term, evaluated according to the mode acceleration method, takes into account the
gravitational effect only. In the numerical application the case of a beam with fixed oscillator is
first studied to demonstrate the capability and accuracy of the proposed method to determine the
discontinuities and jumps in the bending moment and shear force distributions, respectively.
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